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The inviscid instability of a longitudinal vortex structure within a steady boundary 
layer is investigated. The instability has wavelength comparable with the boundary- 
layer thickness so that a quasi-parallel approach to the instability problem can be 
justified. The generalization of the Rayleigh equation to such a flow is obtained and 
solved for the case when the vortex structure is induced by curvature. Two distinct 
modes of instability are found ; these modes correspond with experimental 
observations on the breakdown process for Gortler vortices. 

1. Introduction 
Our concern is with the unsteady three-dimensional breakdown of longitudinal 

vortices in incompressible boundary layers. Though we shall concentrate on the 
situation where the vortices are induced by streamline curvature, our analysis is 
equally relevant to secondary instability of the vortex structures produced in the 
later stages of boundary-layer transition as described recently by Hall & Smith 
(1991). It is well known that both steady and unsteady boundary layers are 
susceptible to  the so-called Gortler vortex instability mechanism ; this mechanism is 
identical to the Taylor vortex instability investigated by Taylor (1923). The latter 
instability is usually associated with the flow between rotating concentric cylinders 
but the terminology is equally relevant to, for example, the centrifugal instability of 
pressure-gradient flows in channels, Dean (1928), or that of a Stokes layer on a 
torsionally or laterally oscillating cylinder, Seminara & Hall (1975), Honji (1981), 
Hall (1984). The main distinguishing feature of the Gortler vortex is that i t  is a 
mechanism which is operational in a spatially varying flow. It is known from the 
recent work of Denier, Hall & Seddougui (1991) that non-parallel effects are 
particularly important at  small vortex wavelengths. 

We shall now discuss briefly some relevant experimental and theoretical results 
concerning the growth and breakdown of Gortler vortices in curved boundary layers ; 
a more detailed account of that work can be found in Hall (1990). Perhaps the first 
experimental evidence for the existence of the instability mechanism predicted by 
Gortler (1940) is due to Lieppmann (1943, 1945), but t.he first detailed experimental 
investigation of the instability was described by Bippes (1972). More recently, 
significant contributions have been made by Aihara & Kohama (1981)) and 
Swearingen & Blackwelder (1987). In the early stages of the vortices' development 
the disturbance field is steady and takes the form of spanwise-periodic counter- 
rotating vortices. Significantly these initial stages appear extremely sensitive to the 
upstream flow and often the initial periodicity of the flow is fixed by some type of 
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forcing mechahism a t  the wall. However, it is known from the work of Hall (1990) 
and Denier et al. (1991) that' free-stream disturbances and wall roughness are both 
possible causes of the initial vortex growth. After the initial onset of the instability 
flow visualization and hot-wire measurements show that a finite-amplitude state, 
evolving in the flow direction, is generated as the boundary layer grows. At some 
stage further downstream this steady state undergoes a secondary instability to a 
three-dimensional time-dependent disturbance. Sometimes this instability leads to 
an unsteady wavy vortex flow of the type which causes the unsteady breakdown of 
Taylor vortices in the circumferential flow between cylinders of almost the same 
radius. In  other situations the breakdown leaves the vortex boundaries flat but 
causes the generation of horseshoe vortices typical of the later stages of flat-plate 
boundary-layer transition. Thus it would appear that  there are at least two distinct 
modes of instability of longitudinal vortex structures. In fact Tollmien-Schlichting 
waves can also be involved in the breakdown process if the wall curvature in the 
experimental facility is sufficiently small to postpone the onset of Gortler vortices to 
high enough Reynolds numbers where Tollmien-Schlichting waves are unstable. 

A theoretical description of the onset of a wavy vortex structure in Gortler vortex 
flows has been given by Hall & Seddougui (1989). That calculation is appropriate to 
small-wavelength vortices where non-parallel effects are not important but 
nevertheless the results found by Hall & Seddougui were consistent with the 
experimental observations of Peerhossaini & Wesfreid ( 1988 a,  b ) .  In particular Hall 
& Seddougui showed that two wavy vortex modes are possible in small-wavelength 
Gortler vortices; in particular these modes are localized in the normal direction in 
thin shear layers above and below the region of vortex activity as described by Hall 
& Lakin (1988). For vortex wavelengths comparable with the boundary-layer 
thickness the linear and nonlinear stages of vortex growth are described by non- 
parallel effects (Hall 1983, 1988), thus the mode identified by Hall & Seddougui is not 
easily investigated in this regime because it leads to a three-dimensional, unsteady 
Navier-Stokes calculation. However it would be extremely surprising if the wavy 
mode instability based on a three-dimensional unsteady Gortler vortex was not in 
operation a t  0(1) vortex wavelengths. In  this paper we shall concentrate on the 
question of whether some of the experimentally observed breakdown routes of 
Gortler vortices owe their origin to  an inviscid instability mechanism. Interestingly, 
in their convincing theoretical description of the onset of wavy Taylor vortex flows 
Davey, DiPrima & Stuart (1968) suggested that the wavy vortex mode might well 
be of inviscid origin. Indeed, recent work by Bassom & Seddougui (1990), who 
investigated more fully the wavy vortex spectrum found by Hall & Seddougui, shows 
that some of the wavy modes are certainly of inviscid character. From the theoretical 
point of view the fact that O( 1)-wavelength vortices evolve in a non-parallel manner 
means that the concept of a unique curve or growth rate is not tenable in the Gortler 
problem (Hall 1983, 1988). It is this property which distinguishes Gortler vortices 
from Tollmien-Schlichting waves, which occur a t  such high Reynolds numbers that 
they are adequately described by a quasi-parallel theory. This is also the main 
difference between Gortler and Taylor vortices ; thus in a Taylor vortex experiment 
the control parameter governing the flow is constant in the steady regime, in the 
Gortler problem the downstream variable in effect plays the role of the control 
parameter. In  the Taylor problem it is well-known that significant changes in flow 
properties occur when the control parameter is slightly increased ; in the Gortler 
problem the experimentalist or theoretician is not able to restrict his attention to 
small increases in this parameter. For that  reason i t  is not surprising that careful 
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experiments on Gortler vortices are not as common as those on the Taylor 
mechanism. 

In this paper we shall in the first instance use the nonlinear scheme of Hall (1988) 
to determine the evolution of finite-amplitude O( 1)-wavelength vortices in a curved 
boundary layer. We shall then investigate the instability of the new three- 
dimensional state at a given downstream position to an inviscid Rayleigh instability. 
These modes have spanwise and streamwise lengthscales comparable with the 
boundary-layer thickness so the stability problem formulated is a local one. The 
formulation of the problem and some particular solutions are given in $ 2 .  In $ 3  we 
describe a scheme used to solve the two-dimensional generalization of Rayleigh's 
equation found in $2.  Finally in $ 4  we discuss our results and compare with 
experimental observations. 

2. Formulation of the problem 
Consider the flow of a viscous fluid of kinematic viscosity v over a wall of variable 

curvature a-'K(x/l). Here a is a typical radius of curvature of the wall whilst 1 is a 
lengthscale in the flow direction. If U, is a typical value of the fluid speed at infinity 
then we define a Reynolds number Re by 

Re = U,l/v, (2 .1)  

G = 21/a Ref, (2 .2)  

and throughout this paper we shall consider the limit Re + co with the Gortler 
number G defined by 

held fixed. Of course it is possible to allow l/a+O, and Re+ 00 such that G+O or 
G +  co but we isolate the above limit because it is known that instability occurs first 
for G = O( 1 ) .  In the absence of any longitudinal vortex structure in the flow we have 
a two-dimensional steady boundary-layer flow U,(a(X, Y ) ,  v(X, Y )  Re-f, 0) obtained 
by solving 

I ax + ify = 0, 

i aax+vay = - p x + a y y ,  
a = v = o ,  Y = O ,  
?3-fUE(X) ,  y-f 03. 

Here (X, Y )  = ( . / I ,  Ref, y / l ) , f i  is the streamwise pressure gradient associated with the 
flow, and u E ( X )  is the dimensionless free-stream speed. Now we suppose that the 
curvature of the wall induces a Gortler vortex velocity field defined by 

u/U,  = u,(X, Y ,  Z )  = (a, ifRe-i, 0) (1 + O(Re-1)) 

+ ( U ( X ,  Y ,  Z ) ,  V ( X ,  Y ,  2) Red, W ( X ,  Y ,  2) Re-;) (1  + O(Re-f)) .  (2 .4)  
Here Z is a dimensionless spanwise variable scaled on Re-fl and we assume that the 
flow is periodic in the spanwise direction with wavelength A = 2n/k .  If P(X, Y ,  2) is 
the dimensionless pressure field associated with (U,  V ,  W )  then, from Hall (1988), we 
see that the system of equations to determine the vortex field and induced mean flow 
is 

( 2 . 5 ~ )  

U y y + U z z - V ~ y  = t Z U x + U ~ x + ~ U y + Q l ,  (2 .5b)  
( 2 . 5 ~ )  

WY.,+ Wzz-Pz = t~W,+ifWy+Q,,  (2 .5d)  

ux+ vy+ wz = 0, 

Vyy + Vzz - GKUU- Py = @VX + UVx + VVy + VVy + QZ, 
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Q,  = UUx + VU, + WU,, 

Q2 = UVx + VV, + WV, + iGKU2, 

( 2 . 6 ~ )  

(2.6b) 
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where 

Q3 = UWx+ VW,+ WW,. ( 2 . 6 ~ )  

The above equations are to be solved subject to 

u = v = w = o ,  Y = O ,  ( 2 . 7 ~ )  

u+o, V + V ( X ) ,  W+O, Y + m ,  (2.7 b)  

where P(X) is a function of X to be determined. The most notable feature of the above 
system is that Px does not appear in the streamwise momentum equation so that the 
vortex equations are parabolic in X .  The nonlinear Gortler vortex equations (2.5) 
were solved by Hall (1988) and the reader is referred to that paper for a discussion 
of an appropriate numerical scheme for their solution. We shall discuss the results of 
such a nonlinear calculation in the next section. Now let us turn to the possible 
instability of a nonlinear vortex flow to an inviscid travelling wave disturbance. 

It is well known that inviscid disturbances vary in the streamwise direction on the 
lengthscale Redl so that their wavelength is comparable with the boundary-layer 
thickness. In  addition the timescale for an inviscid disturbance is 1Ui'Re-t so that we 
perturb the basic state by writing 

u/U,  = u,+A(u(X,  Y , X ) , v ( X ,  Y,Z),w(W, Y,Z))exp{iRe%(X,T)}, (2.8) 

where T = tU,,/l and A is taken to  be sufficiently small for linearization to be a 
valid procedure. Finally we take the corresponding pressure perturbation to be 
AP(X,  Y, 2)  pu2, exp {i Re%(X, T )  where p is the fluid density. If we now write a = Ox, 
ac = -8, then we find that, in the limit Re+ co, the zeroth-order disturbance 
equations at the local position X are 

iaU+ V,+ W, = 0, 

ia{ 0- c }  U+ VOy = - iaP, 

ia(0-c} V =  -Py ,  
(2.9) 

ia{O-c} W +  WU, = -pZ, J 
where 0 = a+ U is the total downstream velocity field associated with the basic state 
in the presence of a longitudinal vortex field. Since viscous effects are negligible away 
from the wall (and any position where = c) the appropriate boundary conditions 
for (2.9) are 

v=o, Y=O,co. (2.10) 

Since the basic state about which we are performing an inviscid instability analysis 
is non-parallel i t  is not clear whether we should seek temporally or spatially growing 
modes. Here we shall concentrate on the temporal case and therefore seek eigenvalues 
of (2.9)-(2.10) with a real and c complex. Our primary aim is to find the fastest 
growing modes so we shall not seek eigenvalues appropriate to  the neutral case with 
a and c real. A discussion of the critical layer structure of (2.9) when a and c are real 
can be found in Horseman (1991) ; essentially it is unchanged from that of the simpler 
situation when 0 is a function of Y alone. I n  general (2.9)-(2.10) must be solved 
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numerically; with this fact in mind it is convenient to eliminate U,  V ,  W to give the 
pressure equation 

(2 .11)  

This equation must be solved subject to the conditions 

P y = 0 ,  Y = O ,  P+O, Y-too, (2 .12)  

and P must, of course, be periodic in Z .  For a Gortler vortex flow l7 may be written 
as 

D = O,(X, Y )  + x On@, Y )  cos nkZ, 
00 

(2.13) 
1 

so that (2.11) has solutions of the form 

m 
P = x P,(X, Y )  sin nkZ, 

1 
( 2 . 1 4 ~ )  

00 

and P = Po@, Y )  + x Pn(X, Y) cos nkZ. (2.14b) 
1 

We refer to the above modes as ‘odd’ and ‘even’ respectively and we note that the 
odd mode leads to the ‘wavy ’ vortex boundaries observed experimentally. In 
contrast the even mode corresponds to a time-dependent state in which the vortex 
boundaries remain flat, we conjecture that this mode leads to horseshoe vortices. As 
mentioned in the introduction there is experimental evidence for both of these 
modes. We also note that (2.14) can be generalized to allow for a more complicated 
spanwise dependence using Floquet theory. Such an approach would allow for the 
possibility of subharmonic modes, but since there is no experimental evidence for the 
importance of these modes, we do not investigate that possibility here. 

The detailed calculations which we made were for the situation when uE = 1 so 
that in the absence of a vortex field all inviscid disturbances are stable. However, 
other basic states are of practical relevance and we note that pressure-gradient- 
driven boundary layers can be inviscidly unstable in the absence of a vortex field. 
There is in fact one situation where some analytical progress can be made with 
(2 .11)-(2.12);  we refer to the case when the spanwise wavenumber k of the vortex is 
small. In this situation it is reasonable to expect that the inviscid disturbance 
behaves in a quasi-parallel manner in the spanwise direction. In that case we can 
drop the dependence of P with respect to Z and then P satisfies the ordinary 
differential equation 

(2.15) 

This is the Rayleigh pressure equation appropriate to a uni-directional flow with U 
a function of Y alone and we can think of the wave speed c as a function of the slow 
spanwise variable $ = kZ. Intuitively we expect that the disturbance will concentrate 
itself where it is most unstable; thus for a given value of a suppose that c = c*, 
&:/a2 = 0, a2c:/i?Z2 -= 0 a t  a point Z = Z*.  In fact for 0 appropriate to a Gortler 
vortex, see (2.13) above, it is easy to show that kZ* = ( 2 n + l )  7c for n = 1 ,2 ,3 ,  ... . 
Moreover, these positions correspond to the cell boundaries where upwelling occurs. 



362 P. Hall and N .  J .  Horseman 

In order for us to determine the precise structure of the inviscid disturbance near 
Z = Z* it is necessary to define 

@ = k f [ Z - Z * ] ,  (2 .16)  
and expand P in the form 

(2 .17)  P =Po(@, Y)+kP(@,Y)+ ... . 
In  the neighbourhood of Z * ,  .?7 expands as 

0 = U$(Y)+k2[2-2*]2U1*(Y)+ ..., (2 .18)  

where we note that the O ( k )  term in this expansion is absent because cT has a local 
maximum a t  Z = Z*.  Finally we expand the eigenvalue c in the form 

c = c o + k c , +  ... . (2 .19 )  

If the above expansions are substituted into (2 .11) - (2 .12)  and terms of order ko, k are 
equated we obtain 

( 2 . 2 0 a )  

P o y = 0 ,  Y = O ,  Po = o ,  Y+CO.l 

(2 .20b)  

The system ( 2 . 2 0 ~ )  is of course the local Rayleigh problem to determine the 
eigenvalue co = co(a) whilst (2 .206)  is an inhomogeneous version of ( 2 . 2 0 ~ )  and 
therefore only has a solution if a solvability condition is satisfied. We assume that 
( 2 . 2 0 ~ )  has a solution and that it can be written in the form 

Po = 4 @ ) P o ( Y ) ,  (2 .21)  

A”+A0c,A-A1 = 0. (2 .22 )  

and the solvability condition on (2 .20b)  yields 

Here the constants A, and A, are given by 

A, = 2 J: -??k [ - “‘-1 %( Y )  oo( Y )  d Y /  ( %( Y )  o,( Y) u,*-co UtY u;-co 0 

’,*, ph oo( Y) dY/( ( Y )  go( Y) dY), 
0 

A, = - 2  (2.23 b )  

where o0 is the function adjoint to the eigensolution po(Y). The solutions of the linear 
amplitude equation (2 .22 )  which decay when [@I --f co are 

A = A , ( Y )  = U(-n-&@), n = 0 , 1 , 2 ,  (2 .24)  

where U( - n - 4, A f 2 h )  is a parabolic cylinder function ; the complex correction to the 
wave speed is then given by 

A 0 c , / 2 A ~  = -%--I 2’  (2 .25 )  

Thus we have an infinite sequence of unstable eigenvalues ; since Z = Z* is the most 
unstable point we know that for any vortex flow A, and A, are such that A i / A o  has 
negative imaginary part so that the n = 0 mode is the most unstable. 

1 
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Hence in the small vortex wavenumber limit we see that Rayleigh modes occur a t  
the spanwise locations where the flow is most unstable in a quasi-parallel sense. 
Alternatively, the structure described above is relevant for O( 1)  vortex wavenumbeys 
when the streamwise wavenumber a is large. Furthermore we note that in the 
situation described above the instability is associated with the inflexional nature of 
the velocity profile 0 in the Y-direction. Now we turn to the question of whether it 
is possible to determine an asymptotic structure associated with the inflexional 
nature of 0 in the Z-direction. 

The basic downstream velocity component will have inflexion points with respect 
to the spanwise variable (i.e. where U,, = 0) at a given value of Y. However, these 
profiles will only lead to an inviscid instability if the latter mode can respond in a 
quasi-parallel manner to the inflexional profiles in the spanwise direction. In order 
for this to be the case the basic the flow must vary more quickly in the spanwise 
direction than in the normal one. Since the normal variation of the basic state is fixed 
by the boundary-layer thickness the only possibility then is to look at  the situation 
when k is large. In that limit, based on the asymptotic structure of Hall (1982 a,  b ) ,  
Hall & Lakin (1988) have given an asymptotic description of the vortex-driven mean 
state. Essentially the boundary layer is split into three regimes. In the main part of 
the boundary layer a finite-amplitude vortex drives a mean flow and B expands as 

O = Oo(X,  Y )  + k-'Ul(X, Y) cos kZ + . . . . (2.26) 

We stress that Oo is driven by the vortex and has no relationship with the mean state 
which would exist in the absence of a vortex. The vortex function O1 is found to 
vanish at  two positions & and yZ satisfying 0 < & < y2 < co. Below & and above y2 
the boundary-layer equations apply and there is no vortex flow. In fact the vortex 
activity is reduced to zero in the shear layers of thickness k-i centred on & and yZ. 

Suppose then that we seek a solution of (2.11)-(2.12) appropriate to the velocity 
field 0 given by (2.26) in the limit k+ co. A t  a given value of Y the function O has 
an inflexion point where kZ = (n++)n for n = 0,1,  ... . Let us now seek a localized 
solution of (2.11)-(2.12) centred on some position Y = P with & < Y < y2. Since the 
instability, if present, must be associated with the O(k-') term in (2.26) we require 
0 - c  = O(k- l ) .  Thus we write 

c = Do( P) + k-lc, + . . . , 
a = &k+ ... . 

The local eigenvalue problem at Y then reduces to 

( 2 . 2 7 ~ )  

(2 .27b)  

(2.28) 

which has solutions with c1 complex. However, the vertical structure ofp corresponds 
to a second-order turning point when described by a WKB expansion only if 
o o Y ( P )  = 0. In that situation the inviscid disturbance is trapped in a layer of depth 
k-t and the vertical structure is then expressible in terms of parabolic cylinder 
functions. However, Hall & Lakin found that for Gortler vortex flows Oo is a monot- 
onically increasing function of Y in the region of vortex activity so the above type 
of localized mode cannot occur when a flow of the type (2.26) is driven by wall 
curvature; nevertheless we expect that this type of mode is physically relevant in 
other situations. 

In the absence of a turning point for o0 a WKB description of the vertical 
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structure of the inviscid mode for k % 1 suggests that any localized mode should have 
its vertical structure described by Airy functions (Walton 1978; Soward & Jones 
1983). For the flow given by (2.26) this suggests that the inviscid modes should be 
confined in a layer of depth k-'. Interestingly enough this means that the inviscid 
mode has a, - a, and the eigenfunction then satisfies a partial differential equation 
again. More precisely if we look for a mode trapped near Y = P and write 

c = k { Y - n ,  . E = k Z ,  

then, if the expansions (2.27) are retained, the zeroth-order approximation to (2.12) 
becomes 

2 Ol ( P) sin .ZP~ 
= 0, (2.29) 

2U0(P) Ps 
cq( Y )  + O1( P) cos z - c1 [q)( Y )  + U1( P) cos z - c1 

+ - -  a2p a 2 p  -+---&?P- - - ap a 2 2  

which must be solved subject to periodicity in 2 and !PI + 0, co. As yet we have 
found no solutions of this eigenvalue problem but further investigations are being 
carried out. However it is interesting to note that (2.29) is applicable to the inviscid 
stability problem for a general velocity field consisting of a spanwise-periodic 
velocity field superimposed on a linear shear flow. Thus, if unstable solutions of (2.29) 
can be found, they are of relevance to a wide class of shear flows. 

The only alternative localized structure for the inviscid mode in the large- 
wavenumber limit would be one which takes account of the localized structure of the 
mean state near Y = q, yZ. As mentioned above, the vortex activity of the mean 
state decays to zero in layers of depth kf near q, yZ. In  fact U in these layers expands 
as 

O = U,,, + k-f{ Y - I;} U,, + k-i{ U,,,( kg[ Y - $1) + U,,,(k:[ Y - Y, ] )  cos Z} + . . . , j = 1,2.  

The mean shear term proportional to Uol again prevents a localized inviscid mode 
structure based on parabolic cylinder functions. I n  fact, Hail & Seddougui (1989) 
show that the basic state in the shear layers a t  K ,  & is susceptible to a (viscous) wavy 
vortex mode of instability. Thus we' believe that, unless unstable solutions of (2.29) 
can be found, there are no vertically localized eigenfunctions associated with the 
highly inflexional velocity profiles in the spanwise direction. 

3. A numerical scheme for the solution of the generalized Rayleigh 
pressure equation 

A suitable scheme to integrate the nonlinear Gortler vortex equations (2.5) has 
been described by Hall (1988) so we assume that 0, the total downstream velocity 
component, is known and outline a scheme to solve (2.11). For computational 
purposes it is convenient to restrict Z in (2.11) to one half of a vortex wavelength and 
determine boundary conditions a t  Z = 0, n l k  appropriate to the odd and even modes 
(2.14a, b ) .  From (2.14) it  is easy to show that appropriate conditions for the odd and 
even modes are 

(3.1) y+ *, I Odd modes : Py=0, Y = O ,  P+O, 

Even modes: Py=0, Y = O ,  P + O ,  

P = O ,  z=o, x l k ;  

(3.2) 
Pz = 0, 2 = 0, n / k .  
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For convenience we define the functions F , G  by 

- 20, - 2UZ 
F = -  G = -  u-c u-c (3.3a, 6 )  

and we define a grid in the 2, Y-directions by writing 

(i- 1) 
$=- Y, = ( i - l ) h ,  n = 1,2,  ...) N .  

( N -  1)  

Thus b and h are the step lengths in the 2- and Y-directions respectively. Suppose 
then that P,, denotes P evaluated a t  (2, Y )  = (Zj, q) .  We now define the vector 6 by 

< =  [!]I, where q =  [ 71 for j= 1,N, 

P N  P M 1  

and if the derivatives in (2.11) are approximated using central differences it follows 
that the discretized form of (2.11) becomes 

Here A,, C, are diagonal matrices defined by 

whilst B, is defined by 

(3.5c) 

In order to take care of the boundary conditions at  Y = 0 the matrix C, is redefined 
by writing 

c, + c, +A,. 

If the system of linear equations (3.4) has a non-trivial solution then we have an 
eigenvalue c = c(a)  of (2.11)-(2.12). The system (3.4) is of block tri-diagonal form and 
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so we can make use of this structure to  speed up the calculations. In fact we solved 
a modified form of (3.4) by first replacing the boundary condition at Y = 0 by 

Py= 1, Y = O .  

This leads to an inhomogeneous form of (3.4) which can be solved for 4 using a 
standard block tri-diagonal solver. Having solved this system we then iterate on c 
until 

{ J;'k P2 dZ}' 1 0. 
Y=O 

In  effect this enables us to satisfy the boundary condition Py = 0, Y = 0. Solutions 
of (3.4) obtained in this way were checked by back-substitution into that equation. 
Typically we found that it is necessary to use 600 points in the Y-direction and 60 
in the spanwise direction in order to calculate growth rates correct to two significant 
figures. However, we shall be more precise about the parameter values used in the 
following section. 

4. Results and discussion 
Our primary aim is to see if we can explain theoretically the experimentally 

observed description of the unsteady breakdown of steady longitudinal vortices 
induced by wall curvature. In  particular we will focus on the experiments of 
Swearingen & Blackwelder (1987) who havc given a detailed quantitative description 
of the breakdown process. First we shall give results which indicate that the 
nonlinear vortex calculations of the type discussed by Hall (1988) do indeed capture 
the essential details of the steady evolution of vortices as measured by Swearingen 
& Blackwelder (1987). 

The experiments of Swearingen & Blackwelder were performed in a wind tunnel 
with a concave section of radius of curvature 320 cm and a free-stream speed of 
500 cm/s. We note that in this configuration Tollmien-Schlichting waves are stable 
in the regime where Gortler vortices develop. The vortices were visualized by smoke 
and velocity fields were measured by a hot wire. In figure 1 we compare our results 
for the displacement thickness and wall shear obtained using the numerical scheme 
of Hall (1988) with the experimental results of Swearingen & Blackwelder for the case 
of a vortex of wavelength 1.8 cm. The calculations were started at  a distance of 10 cm 
along the wall and the vortex amplitude was estimated from the experimental 
observation. In order to compare with experimental observatidns we have computed 
the wall shear and the displacement thickness in the low-'and high-speed regions. 
Note here that the low- and high-speed regions correspond respectively to  where 
upwelling and downwelling occur. We see that the computations predict the same 
kind of trends as observed experimentally upto a distance of 100 cm from the leading 
edge. Beyond that position the calculations diverge from the observations and in fact 
a t  a distance of about 120cm from the leading edge the computations predict 
reversed flow and are therefore no longer valid. However, we believe that the reason 
why the calculations and observations diverge beyond x = 120 cm is that by this 
stage the vortex state has suffered a bifurcation to a three-dimensional time- 
dependent state. Below we shall show results that suggest that this breakdown is due 
to the instability mechanisms discussed in $2. Before discussing our results for the 
breakdown problem we will point out some relevant details of experimental 
observations concerning breakdown. 
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that calculated using the method of Hall (1988). ( b )  A comparison between the wall shear measured 
experimentally and that predicted by the method of Hall (1988). 0, Low-speed region; 0,  high- 
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We refer first to figure 14 (a, 6 ,  c) of Swearingen & Blackwelder which shows smoke 
visualizations of the breakdown process for Gortler vortices. The visualizations 
correspond to an initial vortex state of wavelength 2.3 cm and show conclusively 
that there are a t  least two types of breakdown that can occur. First there is a sinuous 
or varicose mode in which the vortex boundaries become wavy in the manner typical 
of secondary instabilities of Taylor vortex flows. The second mechanism leaves the 
vortex boundaries flat and the smoke patterns indicate the presence of a horseshoe 
vortex typical of the later stages of transition in a flat-plate boundary layer. We shall 
show below that the theory of $2 can describe both types of process and that the 
horseshoe and vortex modes are to be associated with the even and odd modes of the 
inviscid stability equations. We further note that previous investigations, e.g. 
Bippes (1972), Aihara & Koyama (1981), have identified the two breakdown 
processes discussed above ; we concentrate on the experiments of Swearingen & 
Blackwelder because the latter authors give the most detailed measurements in the 
breakdown regime. Finally, before discussing our results, we note that Swearingen & 
Blackwelder reported that the sinuous mode was the most preferred mechanism in 
their experiments. The downstream wavelength of this mode is estimated to be about 
4.2 cm from their figure 14(c), and they give a value of about 130 Hz for the 
measured frequency of this mode. 

I n  order to generate a basic state to  be used as a basis for the theory of $2 we 
considered the configuration discussed above which we recall corresponds to  a 
spanwise wavelength of about 2.3 cm. The linearized Gortler vortex equations were 
integrated for x = 30 to 60 cm using the initial condition 

U=Pexp[-Y2/2X], V = O  

of Hall (1983). At x = 60 cm the nonlinear terms were switched on and the initial 
r.m.s. value of the vortex was estimated from figure 17 of Swearingen & Blackwelder. 
In figure 2 we show contours of constant 0 a t  x = 70,80,90,100 cm. We see that this 
figure agrees qualitatively with figure 11 of Swearingen & Blackwelder. At 
x = 100 cm the calculated contours do not show the pronounced ‘mushroom’ 
structure shown in the experimental results but we note here that improved 
agreement with the experimental results can be found by ‘tuning ’ the position where 
nonlinear effects are switched on. More precisely the increased vortex activity 
observed experimentally can be predicted if nonlinear effects are switched on well 
beyond x = 60 cm. However, we do not pursue this type of optimization procedure 
because it is, of course, not justified since there is certainly vortex activity a t  
x = 60 cm. 

Our calculations were almost exclusively for the basic state discussed above for 
x = 100 cm ; this restriction was necessary because of the computational expense of 
the solution of (2.11)-(2.12). In  order to calculate the eigenvalues of that system to 
the graphical accuracy of the figures which follow we used 600 points in the vertical 
direction with a step length h = 0.25 and 60 points in the spanwise direction (for a 
half-wavelength) . 

In  the first instance we consider the odd modes of instability associated with 
(2.11)-(2.12). I n  figure 3(a) we show aci as a function of a for the two most unstable 
odd modes at x = 100 cm. We note that since eigenvalues of (2.11) occur in complex- 
conjugate pairs the eigenvalues shown do indeed correspond to unstable dis- 
turbances. Also shown is the only unstable mode we were able to locate a t  x = 80 cm. 
We see that the fastest growing mode at  x = 100 cm occurs when a - 0.037 and this 
corresponds to a downstream wavelength of about 3 cm. Since the odd mode leads 
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FIGURE 2. Contours of constant values of 0 at  (a )  5 = 70 em, ( b )  80, ( c )  90, ( d )  100. 

to wavy vortex boundaries this mode corresponds to the varicose mode of Swearingen 
& Blackwelder. Thus the predicted downstream wavelength of about 3 cm 
corresponds to an experimentally observed value of about 4.2 cm. Figure 3 (b )  shows 
the frequency of these modes as functions of a, the fastest growing mode with 
a = 0.037 corresponds to a frequency of 110 Hz ; again this compares favourably with 
the experimentally measured value of 130 Hz. Later we shall point out why it would 
be unreasonable, or fortuitous, to obtain better agreement with the experimental 
results. Now let us turn to the even solutions of the pressure disturbance equations. 

In  figure 4(a )  we show the growth rate of the first two unstable even modes a t  
x = 100 cm; we note that no unstable modes were found a t  x = 80 cm. The 
corresponding frequencies of these modes are shown in figure 4 (b ) .  A significant result 
is that at x = 100 cm the fastest growing odd mode has a growth rate twice as large 
as that of the fastest growing even mode. This is consistent with the observations of 
Swearingen 5, Blackwelder who found that the sinuous mode was the most easily 
excited mode during transition. 

We now consider the flow fields associated with the fastest growing even and odd 
modes a t  x = 100 cm. The velocity eigenfunction associated with the solution was 
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FIGURE 3. (a) The growth rates of the two most unstable odd modes at z = 100 cm. Also shown is 
the only unstable mode found a t  x = 80 cm. ( b )  The frequencies of the odd modes at z = 80, 100 cm. 
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normalized such that the maximum value of Ivl was unity in each case. Figure 5(a, b )  
shows contours of constant IuI,lvl in the (Y,Z)-plane for the fastest growing even 
mode whilst figure 6 (a, b) shows the corresponding functions for the fastest growing 
odd mode. We see that in each case the downstream velocity component is an order 
of magnitude larger than the Y-component. Again we see in each case that the 
downstream velocity field is much more concentrated than the normal one. Indeed 
the downstream velocity components are concentrated in the flow field in the region 
where 0 - c  is small ; in other words the inviscid mode localizes itself in a region which 
would develop into a critical layer in the neutral case. A major difference between the 
IuI structure for the even and odd modes is that the even mode spans the position 
where upwelling occurs. 

The velocity fields shown in figures 5 ( b )  and 6 ( b )  are to be compared with fig- 
ure 16 of Swearingen & Blackwelder a t  x = 100 cm. We note that the experimental 
results show the flow field over two wavelengths and that the position 2 = 1.15 in our 



1.1 

Y 
0.8 

0.5 

Inviscid instability of vortex structures in boundary layers 373 

1.6 

1.3 

1.0 

0.7 

0.4 

0.1 

0.5 0.8 1.1 1.4 1.7 

Z 

0.2 0.5 0.8 1.1 1.4 1.7 

Z 

FIQURE 6. (a) Contours of constant IuI for the most dangerous odd mode. (6) Contours of 
constant IvI for the most dangerous odd mode. 

work corresponds to the locations z = 1.15, - 1.15 cm in the notation of Swearingen 
& Blackwelder. The calculations for both modes produce a velocity field concentrated 
in the region where the experiments produced the most significant disturbances. In  
fact the odd mode shown in figure 6 ( b )  qualitatively resembles the experimental 
results away from the wall. Since the theory we have developed is inviscid we cannot 
hope to capture the experimentally observed disturbance structure close to the wall. 

Our calculations suggest that each mode is unstable for a fmite band of 
wavenumbers; probably the lower end of this range is at  zero wavenumber. The 
numerical scheme we used fails if the wave speed is real, in which case there exists 
a critical layer in the flow, see Horseman (1991). Indeed if any of the growth rate 
curves are followed towards the horizontal axis (2.11) becomes progressively more 
expensive to solve since the equation is tending to become singular. For that reason 
we did not attempt to search for neutral modes by calculating unstable modes at 



374 P .  Hall and N .  J .  Horseman 

smaller and smaller growth rates; clearly any attempt to find the neutral modes must 
be based on a scheme which takes account of the disturbance structure a t  the critical 
layer. Since our main aim was to  show that Gortler vortex flows are inviscidly 
unstable we choose not to tackle the neutral case, though the required structure a t  
the critical layer is given in Horseman (1991). 

Finally we close with a few words concerning the agreement of our results with the 
experimental observations. Essentially we wish to explain why it would be 
unreasonable to  expect agreement better than that found above. The reason why we 
believe that this is the case is that the nonlinear Gortler vortex equations are 
parabolic in X. This means that the vortex flow at a given location depends on its 
upstream history so that the finite-amplitude vortex which we calculated as a basis 
for the stability calculations would be altered if the position where it was inserted 
into the flow was changed. We recall that the finite-amplitude state we calculated 
was introduced into the flow 60 cm from the leading edge. If this position is varied 
we find that the agreement between the calculations and experiments shown in fig- 
ure 1 can be tuned to obtain optimum agreement. Typically we find that the flow 
properties shown in figure 1 vary by about 10% if the initial position of the vortex 
is pushed back as far as say 20 cm from the leading edge. Some limited calculations 
of the stability problem for flows calculated with these different initial vortex 
locations indicated a similar change in magnitude of the growth rates. Of course we 
could fix the initial vortex location so as to optimize the agreement between the basic 
state calculated numerically and that found experimentally. We choose not to  do 
that because there is no justification for such a procedure ; indeed it might be argued 
that the inherent non-uniqueness of the Gortler problem is present in the experiments 
as well. However, i t  can be said that the calculations we have carried out reproduce 
several key features of the experiments ; to further optimize the agreement between 
theory and experiment would require an inordinate amount of computer time to 
reproduce features of an experiment which might itself not be precisely reproducible. 

The authors wish to thank SERC and USAP for support for part of the work 
reported on above. Further thanks are due to  ICASE where part of this work was 
carried out by one of us (P.H.). The authors also wish to thank the referees of this 
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